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ABSTRACT

Methods for studying the bifurcation behavior of tubular reactors have
been developed. This involves the application of static and Hopf bifurcation
theory for PDE's and the very precise determination of steady state
profiles. Practical computational methods for carrying out this analysis are
discussed in some detail. For the special case of a first order, irreversible
reaction in a tubular reactor with axial dispersion, the bifurcation behavior
is classified and summarized in parameter space plots. In particular the
influence of the Lewis and Peclet numbers is investigated. It is shown that
oscillations due to interaction of dispersion and reaction effects should not
exist in fixed bed reactors and moreover, should only occur in very short
"empty" tubular reactors. The parameter study not only brings together
previously published examples of multiple and periodic solutions but also
reveals a hitherto undiscovered wealth of bifurcation structures. Sixteen of
these structures, which come about by combinations of as many as four
bifurcations to multiple steady states and four bifurcations to periodic
solutions, are illustrated with numerical examples. Although the analysis is
based on the pseudohomogeneous axial dispersion model, it can readily be
applied to other reaction diffusion equations such as the general two phase
models for fixed bed reactors.
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SIGNIFICANCE AND EXPLANATION

Although the theory of static and Hopf bifurcation for nonlinear

distributed parameter systems has been essentially developed, computational

procedures easily used by applied mathematicians and engineers are required to

bring these results into practice. The object of the present study is to show

how the static and Hopf bifurcation behaviour for highly nonlinear processes

may be determined as a function of process parameters. Special numerical

methods are required to handle the very stiff steady state equations often

encountered. Then special methods are demonstrated for mapping the parameter

dependence of the bifurcation points. The direction and stability nature of

the oscillatory solutions arising at Hopf bifurcation points is not determined

here. However Poore and Heinemann [1980] describe an algorithm for this

calculation.

The computational procedures are illustrated by application to an

important problem found in chemical engineering: the dynamic behaviour of

tubular reactors. Regions in parameter space are determined showing where

static and Hopf bifurcations (both single and multiple) occur. The

engineering significance of the results for this example problem is discussed.
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THE BIFURCATION BEHAVIOR OF TUBULAR REACTORS

Klavs F. Jensen and W. Harmon Ray

1. INTRODUCTION

In fixed bed reactors the reactants flow in gaseous or

liquid form through a. vessel (generally cylindrical in shape)

packed with solid catalyst particles within which the reaction

takes place. In the absence of catalyst packing, the vessel

only serves to confine the reaction medium and it is then

known as the "empty" tubular reactor. Naturally, the complex

transport and reaction processes allow for different levels of

sophistication in the mathematical modelling necessary to design

and optimize fixed bed reactors [1-5. Since these reactors

moreover are used in a vast number of industrially important

reactions (1, Table 11, they have received considerable atten-

tion during the last two decades. In particular, the occurrence

of multiple steady states, t.avelling waves, and oscillatory

states in these reactors has been a focal point in many

theoretical and experimental investigations (cf. [5-121 for an

overview). These phenomena were predicted by theoretical

analyses before being consciously noted in experiments.

Table 1 gives a listing of experimental studies where

multiple steady states (M) , so-called wandering profilcz (W),

and oscillating behavior (0) were reported. Following

Schmitz [9] we have omitted studies where the reactor was

of the recirculating type which behaves more like a

continuously stirred tank reactor (CSTR) than a fixed bed

reactor. The publication dates of the entries in the. table

clearly demonstrate the recent growth in experimental evidence

for bifurcation phenomena in fixed bed reactors.
t
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Table 1 Experimental studies of steady state multiplicity and
instabilities in tubular reactors

Reference Experimental System Remarks

1. Volter, 1964 [13] Polymerization of ethylene in a 0
nonadiabatic tubular reactor

2. Padberg and Wicke, Oxidation of CO on Pt/Al 2 03 in M,W
1967, 1968 (14] an adiabatic fixed bed reactor

3. Wicke et al., Oxidation of ethane on Pd/A1 2 03  M,W
1968 [15] and oxidation of CO on Pt/A1 203

in adiabatic fixed bed reactors

4. Root and Schmitz, Liquid phase reaction between M
1969, 1970 [161 Na 2 S20 3 and H202 in a tubular

reactor with recycle

5. Fleguth and Wicke, Oxidation of CO on Pt/Al 2 03 in a M
1971 [171 fixed bed reactor

6. Luss and Medellin, Liquid phase reaction between M
1972 (18] Na 2 S_0 3 and H 202 in a tubular

reactor with countercurrent
flow of cooling in an annulus

7. Butakov and Liquid phase polymerization of M
Maksimov, 1973 (191 styrene in a nonadiabatic

tubular reactor

8. Hlavacek and Oxidation of CO on Pd/A1 2 03 and M
Votruba, 1974 [20] CuO/AI 2 03 in an adiabatic fixed

bed reactor

9. Renken et al., Hydrogenation of ethylene on OM
1975 (21] Pt/A12 03 in a fixed bed reactor

10. Stephens, 1975 Methanol synthesis in industrial M
[22] autothermal fixed bed reactors

11. Hlavacek et al., Oxidation of CO on CuO/A12 0 3, M
1976 (23] Pd/A12 03 and Pt/A1 2 03 in an

adiabatic fixed bed reactor

12. Votruba et al., Oxidation of CO on Pt/A12 03 and M
1976 [24] CuO/A1 2 /0 3 in an adiabatic fixed

bed reactor

13. Ampaya and Rinker, Water-gas shift reaction on 1
1977 (251 Fe 3 04 /Cr 2O 3 in an autothermal

fixed bed reactor
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Table I (Cont.)

Reference Experimental System Remarks

14. Hegedus et al., Oxidation of CO on Pt/A1 2 03 M
i977 [26] in an isothermal fixed bed

reactor

15. Schleppy and Shah, NO reduction with CO over
1977 [27] fiberglass supported Ru in a

nonadiabatic fixed bed reactor

16. Butakov and Liquid phase decomposition of 0
Shkadinskii, dinitroxydiethylnitramine in
1978 [28] acetic anhydride in a tubular

reactor

17. Hlavace, and Oxidation of CO on CuO/A1 2 03, M
Votruba, 1978 [121 Pd/A1 20 3 and Pt/A1 2 03 in an

adiabatic reactor

18. Oh et al., 1978 Oxidation of CO on Pt/A1 20 3  M1

[29] in an isothermal fixed bed
reactor

19. A.kus et al., Oxidation of CO on Pt/A1 20 3 in M
1979 [30] an adiabatic fixed bed reactor

20. Oh et al., 1979 Oxidation of CO on Pt/A1 2 03 in M1

(31] an isothermal fixed bed reactor

21. Sharma and Hughes, Oxidation of CO on a CuO-catalyst M
1979b [32] in an adiabatic fixed bed reactor

22. Hlavacek ,t al., Oxidation of CO on Pt/A12 03 in a M
;0 10 [33] deactivated fixed bed reactor

23. Kalthoff and Oxidation of ethane on Pd/A12 03  M
Vortmeyer, 1980 in a nonadiabatic fixed bed
(34] reactor

24. Paspek and Varma, Oxidation of ethylene on Pt/A1 2 03 M
1980 [35] in a nonadiabatic fixed bed

reactor

25. Puszynski and Oxidation of CO on Pt/A1 2 0 3 in M,W
Hlavacek, 1980 a nonadiabatic fixed bed reactor
136]

M multiple steady states
0 self-sustained oscillalions
W special investigation of ;'wandering"-profile'.
1) short catalyst bed - approximately 8 catalyst layers
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Because of the complex transport and reaction processes

in fixed bed reactors, multiple steady states are generated

by various kinetic and physicochemical mechanisms. The

observed multiplicity behavior in the liquid phase reactions

(entries 4 and 6) has been shown to follow the predictions

of a plug flow reactor in a recycle loop. Naturally, the

multiplicity ot states in the autothermal reactors (entries

10 and 13) can be attributed to the feedback of heat through

the preheating loop. In the studies by Hegedus, Oh and their

coworkers (entries 14, 18, and 20) the multiple profiles stem

from multiple steady states of the individual catalyst particles.

Because the bed contains relatively few particles, the

investigators are able to realize a number of stable profiles.

Paspek and Varma (entry 24) also attribute the multiplicity

behavior to the individual catalyst particles and explain the

phenomenon in terms of interactions between the reaction and

intraphase transport processes.

In the cases correspondinq to the remaining entries in

Table 1, dispersion effects seem to be part of the underlying

mechanism. Hlavacek, Votruba and their respective coworkers

(entries 8, 11, 12, 17, and 22) studied extensively the effects

of reaction conditions on the multiplicity behavior in CO-

oxidation and found that the phenomenon disappeared beyond

a critical length (corresponding to Pe ~ 180) where the

dispersion effects became insignificant. However, they also

observed three stable profiles in their adiabatic reactor

contrary to the theoretical prediction from the pseudo-

homogeneous dispersion model of a maximum of two stable

profiles. On the other hand, Sharma and Hughes (entry 21)

-4-



studying the same catalytic system could not realize more than

the predicted two stable profiles. These authors found that

a two phase axial dispersion model was required to accurately

model their experimental data, whereas Schleppy and Shah

(entry 15) showed for a different reaction system that the

pseudohomogeneous axial dispersion model sufficed to fit

the observed ignition and quench behavior. Kalthoff and

Vortmeyer (entry 23) also used a pseudohomogeneous model but

found it necessary to include the radial porosity and velocity

distributions in order to quantitatively model the observed

multiplicity behavior.

Wicke and his coworkers (entries 2 and 3) demonstrated the

existence of travelling wave fronts, so-called wandering profiles,

which moved slowly (linear velocity -10- 3cm/sec) and with small

changes in shape through the reactor for changes in the gas

velocity. For high gas velocities, the front was blown out,

while for low velocities the front moved upstream to the reactor

inlet. An intermediate velocity stabilized the front in the

middle of the reactor. The travelling fronts are characterized

by steep concentration and temperature gradients and most

likely represent transitions between multiple steady state

profiles. Transients reported by Sharma and Hughes (entry 21)

as well as by Puszynski and Hlavi ek (entry 25) nicely

demonstrate the moving front structures which come about

during the transition between states.

Oscillatory states in tubular reactors are reported in

three experiments, entries 1, 9 and 16, but only in the last

case are the oscillations linked to a mathematical model,

-5-



namely the axial dispersion model. The lack of experimental

evidence of oscillatory profiles in fixed bed reactors may be

explained by the fact that the characteristic time for thermal

transport within the bed is so much larger than the one for

material transport, i.e. the Lewis number is so large that

oscillations are not expected even in shallow beds. This point

will be treated in more detail below.

The question of uniqueness of the solution to the fixed

bed reactor equations has been considered by numerous investi-

gators, notably Amundson, Hlav9ek and their respective

coworkers. The axial dispersion model with a single first

order reaction has been a favorite target for mathematical

analyses and sufficient conditions for uniqueness have been

developed by applying fixed point methods, comparison theorems,

bifurcation theory, and Liapunov functionals. These contribu-

tions and others dealing with alternative models are reviewed

by Jensen [37], Ray [7], Schmitz [9], and Varma and Aris [11].

The sufficient conditions for uniqueness, in the general case

of a nonadiabatic reactor with unequal Peclet numbers for heat

and mass dispersion, show (as intuitively expected) that the

solution will be unique for sufficiently high values of the

Peclet numbers, large heat transfer coefficients, or small

values of the Damkohler number. Extensive calculations by

Hlavacek and his coworkers [38-43] confirm this and show, in

addition, that increasing the adiabatic temperature rise or

the activation energy enlarges the region of multiplicity and

u1.[ts it towards lower Damkohler numbers, while an increase

in the reaction order reduces the region of multiplicity.

XMAtiiplicity higher than three is possible only in the non-
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adiabatic reactor, where five stt.ady states have bven

calculated j4d,44,45]. Recently, Kapila et al. [46] have

shown by using activation energy asymptotics that as many as

seven steady Ctates may exist in the limit of large activa-

tion energy.

Also the travelling reaction fronts have generated much

theoretical interest. Vortmeyer et al. [47-49] consider the

reactor infinitely long which seems to be a reasonable assump-

tion because the concentration and temperature changes in the

front occur over very small distances compared to the reactor

length. Gilles [50], in addition, approximated the reaction

rate over the front zone by a Gaussian distribution. Rhee et al.

(51,52] employed two-phase cell and continuum models and

developed explicit formulae for the velocity similar to that

for a shock layer in a nonreactive system. The above

approaches all showed good agreement with experimental data.

The stability of the steady state has been studied

numerically by linearization where the dominant eigenvalues

were determined from either a collocation or Galerkin approxi-

mation to the linearized equations [44,45,53,54]. Alternatively

sufficient conditions for stability have been derived through

the use of comparison theorems and Liapunov functionals [55-6:].

As expected from the physical situation and formally shown

by singular perturbation theory [64,65], the pseudohomogeneous

axial dispersion model reduces to the CSTR model as the Peclet

number becomes very small. Therefore, based on the dynamic

behavior of the CSTR [cf. 66,67] one expects oscillations to

exist in short reactors. The existence of such oscillations

in the "empty" tubular reactor has been determined computationally
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by Hlavacek and Hofmann [39] and Varma and Amundson [45b)

However, examples have not been calculated for fixed bed

reactors. A detailed parametric study has not yet been

performed for either type of reactor; thus, in this paper

we shall show how such a study can be made by using bifurca-

tion theory. We shall be especially concerned with the effect

of the Lewis number, i.e. the ratio of physical transport

thermal time constant to physical transport material time

constant. This parameter, which is unity for the empty

tubular reactor and much greater than unity for fixed bed

reactors, has been shown to have a striking influence on

the dynamics of chemically reacting systems (cf. [67] and

references within). Therefore, the analysis will have practical

interest in revealing if limit cycles are at all possible even

in short fixed bed reactors. Although the bifurcation analysis,

i.e. the study of multiple steady states and oscillatory

behavior, will be based on the pseudohomogeneous axial

dispersion model with first order Arrhenius kinetics, the

general approach readily applies to other reaction-diffusion

equations with complex rate expressions. The dispersion model

is a particularly good example for illustrating the techniques

since the modelling equations form a relatively simple set of

nonlinear parabolic differential equations which are capable of

predicting multiple steady states and limit cycles. Moreover,

stiffness problems are often encountered in the numerical

solution to the steady state equations which means that one

has to devise versatile and efficient algorithms. Finally, the

previously published examples of multiple steady states [e.g.

38-41,45) make it possible to check the algorithms.

-- 9 .- -.



I

2. MC,) 1 A *LILi:_.__ ,.,,AT IO S;

In tie c.asu- of an irreversible first order reaction, the

equations of the pseudohomoqeneuus axial dispersion model are

two coupled nonllnear parabolic partial differential equations

for the reactant concentration and the temperature [2,11].

The equations are:

ac(zI't I) c(z' ,t' ac(z ,t)
S D-v

p at' L a., 2 z a '

-k 0(l- )c(z' ,t()exp[-)A/RT(z',t')]

aT ' , t ) aT 2 (z' ,t ' ) 3T ' z t )

=k+ (-7P t
PEppfCpf p)PsCps] a L az,

2  f pfVz z'

+ (1-£p) (-V.)k C(z' ,t)exp EA/RT(z' ,t') ] - uw(.1(7. t'-Tw
( z  t

p 0 Adr (2
(2)

with initial conditions

c(z',0) = c. (z') T(z' ,0) = T. ') (3)
in In(3

Here we use Danckwerts' boundary conditions, even in the analysis

of the transients.

-D ac(z' 't') = V zc0(t') - c(0,t')] (4a)
L az' 0 0

a = 0 
(4b)

" z' 0 £ P

az 0 
=
vOfCpf T0(t') - T(0,t')1 ] Sa)

aT't') 0
az' z 0 

5b)a



In the above equations c and T represent the concentration

and temperature. DL  and k L  are the longitudinal dispersion

coefficients, while v is the gas velocity. Subscripts f, S,z

and w denote the fluid phase, solid phase, and reactor wall

respectively. £ and d are the bed porosity and diameter.p r

k and E represent the usual Arrhenius parameters. U is0A w

the overall heat transfer coefficient between the reactor and

cooling medium. The effect of radial heat dispersion may be

included in U by making a one-point collocation approximationw

to the radial temperature profile (80].

The equations are made dimensionless by defining:

c-c 0  T-T0j E A  T-TO E E
x 1 , x 2  0- 2a- =T w 1  A0 A
1 C0  T J RT0 T 0 RT 0  RT 0

t'v v
-- , Pe = Dt, ' £ 1 DL

P L(6)

V zp C 2(i-c )k e-V (-tH)c Y
Pe z , Da p

Lz ppfT 0

4U w EpPfCpf + (1-C )p Cv d w Le = - pc p s

Vz dr pf Cpf pfCpf p

We then obtain the following set of equations:

ax

~at LXf)

whe1-e C denotes the capacity matrix

1 0
I -(8)

0  
Le

-10-
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and L denotes the linear differential operator:

L 1 2 - ag(9)
. z2

The nonlinearity f(x) is:

Da(l-x)exp x2, 1
f(x) -L J1(10)

LB Da(I-x) excp [21_] + e

In this formulation the boundary conditions take the form:

(L)- Pe 0

B(O - [1 X( t) - 0 1Ca)
0 --- Pe

3z 2

In the special adiabatic case with Le = 1, the modelling

equations may be reduced to one equation. This is done by

multiplying the mass balance by B and subtracting it from

-ii



the energy balance to give an equation whose only solution is

x2 = Bx 1  (12)

This relationship makes the reaction rate a function n only

one variable.

The parameters each have specific physical meaning. The

quantity B is a dimensionless adiabatic temperature rise and

Da represents the ratio of reactor space time to the

characteristic reaction time. Pe 1 and Pe 2 are the Peclet

numbers for mass and heat transport and $ is a dimensionless

heat transfer coefficient. As mentioned, Le is the ratio

of the physical transport thermal time constant to the physical

transport material time constant [67).

Based on common exothermic reactions, Hlavacek and Votruba

[5, Table 6.6] list values of B and y in the range 5-30 where

the high values of B usually correspond to oxidation reactions.

For the "empty" tubular reactor Le = 1, while for a typical

fixed bed reactor Le - 500. When the reactor is empty,

Pe i  Pe 2, while for the packed reactor, PeI  2-3 times

Pe 2 since the value of Pe 2 derives from the width of the

reaction zone as well as the length of the reactor. This

implies that multiplicity is possible even in long reactors

(cf. [41]). The Damkohler number, Da, and the dimensionless

heat transfer coefficient, 6, vary with the reactor space

time but are usually less than 0.5 and 5 respectively.

3. BIFURCATION ANALYSIS

Bifurcation, or branching of solutions, is closely related

to the stability and thus to the eigenvalues of linearized system

-12-
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equations. As an example, consider the system of nonlinear

coupled ODEs

dx
d- 

= 
F(x,p)

where x is a state vector and p represents a vector of

parameters. The system is locally stable if all eigenvalues

of the Jacobian have negative real parts. The eigenvalues are

functions of the system parameters and these may change such

that the system loses its stability. The exchange of stability

occurs as some eigenvalues cross the imaginary axis, and it is

at this point that the bifurcation can take place. Therefore,

bifurcation is often referred to as "the principle of exchange

of (linearized) stability" (cf. [68] for a detailed discussion

of this). There are two ways in which the eigenvalues can cross

the imaginary axis, namely:

(i) A simple eigenvalue passes through the origin. This

leads to bifurcation of stationary solutions and is

known as "static bifurcation" (69].

(ii) A pair of simple complex conjugate eigenvalues cross

the imaginary axis. This leads to bifurcation of

periodic solutions and is known as "Hopf-bifurcation"

(cf. [70] for more details).

Occasionally multiple eigenvalues cross the imaginary axis

together and this may produce complex interactions between the

two basic bifurcation phenomena (cf. [70,71] for examples).

Because partial differential equations (PDEs) can be

regarded in some aspects as an infinite set of ODEs, one

intuitively expects, and can in fact show, under certain

-13-



limited conditions (71-75 and reterenres within], that the

bifurcation theorems for ODEs can be extended to the "infinite

dimensional case". The review paper by Crandall (75] gives a

particularly readable account of the necessary concepts and

proofs. The conditions are all satisfied for the parabolic or

elliptic partial differential equations which arise in reaction-

diffusion problems.

We now linearize the equations around a spatially varying

steady state profile rather than a point as in the ODE case.

The linearized equations take the form:

L 7 + X(z) (13)
a t ax

!(z)-xs(z)

B xCO) 0 (14)

B0s(0) = 0 (15)

where .x = x-xs and C, L, f, B 0 , and B, are defined by

equations (8), (9), (10), and (11) respectively. The branching

to nontrivial solutions or periodic solutions is then governed

by the discrete spectrum, i.e. the eigenvalues, of the linear

operator:

F -C
1  + (16)

An.!Iogously to the ODE case, one sees:

-14-



(i) Static bifurcation, when a simple eigenvalue in

the spectrum passes through the origin.

(ii) Hopf-bifurcation, when a simple pair of complex

eigenvalels in the spectrum passes the imaginary

axis.

In addition, there must be an exchange of stability at the

bifurcation point; e.g., in order to have Hopf-bifurcation,

the remaining eigenvalues must have negative real parts.

The first N eigenvalues of F may be determined by using

projection techniques such as Galerkin's method orthogonal

collocation. In the limit of infinite terms, both methods

will represent F exactly [76,77), Thus, this "late lumping"
-x

procedure retains all tho information in the original partial

differential equations, contrary to the behavior of the "early

lumping" procedures such as Hlava'ek's "linearization" [3j

which, for example , cannot predict the existence of more than

three steady states. For both the collocation and the

Galerkin method the finite- dimensional Jacobian takes the form:

KK

51~l 2 , '
i !

I (1

. . .- - -- --- . . . . . -
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where N is the number of eigenfunctions in the Galerkin

method or the number of interior collocation points in the

collocation method.

The quantities M. and K.. are 2 x 2 matrices defined

below (except in the special adiabatic case with Le = i,

where they are scalars). In the following we shall describe

our approach to this analysis using weighted residual methods [77).

(i) Galerkin's method

We make the usual transformation which causes the problem

to become self a-ioint [62]:

-" r Pek 

* xPeexp -- z , k - 1,2 (18)

and choose the trial function exp. sion:

N
k -. aki t ( ki ( ) , k 1,2 (19)

i-ki

where the ki (z) are the orthonormal eigenfunctions

corresponding to the self adjoint eigenvalue problem:

2 (

dz 2 n kn kn (20

dz 20kdO Pe

-An 0 (Z=') (21a)

d~kn _Pe

4Z " # (2=1) (21ib)

dz 2 kn

hence

k(z ) 121t, Pe 4) e 4 1/ z +/2 Pe C s(n) v(P / Z)Okn kn k k kns knZ k kn'

(22)

-16-
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where the eigenvalues, Xkn' are the zeros of the

transcendental equation:

tan = 2 (23)
A kn - (Pek /2)

By inserting the trial functions into the linearized equations

and making the resulting residuals orthogonal to the first N

eigenvalues, one obtains the following system of ODEs:

da(t)
Ja (t) (24)

T

where a (a ll,a 2 1 ,a 12 ,a 22' alN a 2N) and J is defined by

(17) with

12Pe P

- (25)

0 - - L2 1 +  2 +

and

0f - 1 O iOJ
d z  1] 1 x [ P 2 P l~ ¢ i l d

1 i7. 0 "x 24P 2-,.) 2i id

- -S --

i j -

1 3f1
21 xp(-j(Pe,-Pe )4 1 1 2 dz I2f af2l

(26)

Note that K i Kji-

-17-
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(ii) The Orthociontl Collocation Method

This method has been successfully applied to many chemical

reaction engineering problems similar to the present eigenvalue

problem [53,54,78-81]. In this method the first and second

spatial derivatives are approximated by a weighted sum of the

values of the dependent variable at the collocation points:

N+1
kz i  Ai) xk' ; i =0,l. N, + = 1,2 (27)

z. =0 Ijj

and

22xk N+I

2 1 Bi ; i = 01,... ,N+, 1+1; k = 1,2 (28)
az2z j=0 jk

The weight matrices depend on the trial functions which in our

case are the first N Jacobi polynomials P( ) (z) with weight

function z (l-z) [8l, ct. 3. Since there is no special

symn-.,etry in the tubular reactor problem, we use (a,B) = (0,0)

in which case the polynomials are Legendre polynomials. In

fact, Georgakis et al. [54 ] compared the convergence rate of

tle cigenvalue calculations for various choices of a and 8

tn3 found that the fewest number of collocation points were

r, i red for a = B = 0. The collocation points are then the

zeros of p (0,0) (b). By discretizing the equations and
N

eliminating the boundary conditions (as detailed in 154 ,81

ct. 41), we obtain the following set of ordinary differential

i,. tons:

_ Jy (29)

-I -
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where the eigenvalues, Xkn' are the zeros of the

transcendental equation:

tan kn= Pek /k 2  
(23)

xkn - (Pek/2)

By inserting the trial functions into the linearized equations

and making the resulting residuals orthogonal to the first N

eigenvalues, one obtains the following system of ODEs:

da(t)
- Ja(t) (24)

dt -

T

where a * (a la21,1,a2 2,... a lN' a 2N) and J is defined by

(17) with

'1- "(25)
1 21i Pe2+--i-- + - '

and

f 1 exp [-Pe2-Pel) ] O2±j
d x

oi  0 *liolidz o 2 2
-- S 0 - -

af2

Note ex[-PlP 2)]0zj1?pr<P2 z e- 2 2 j dz

0 ax ,20 a 2

(26)

Note that KJ ji"

-17-
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(ii) The Orthoconal Collocation Method

This method has been successfully applied to many chemical

reaction engineering problems similar to the present eigenvalue

problem [53,54,78-81). In this method the first and second

spatial derivatives are approximated by a weighted sum of the

values of the dependent variable at the collocation points:

ax N+l

A = ijxk i= 0,1,...,N, N+1 ; k = 1,2 (27)
j=Q 0 k

and

x k2k N+l

2 = B ii X ; i = 0,1,...,N, N+1 k = 1,2 (28)
z j=0z.

The weight matrices depend on the trial functions which in our

case are the first N Jacobi polynomials P. (z) with weight

a B
function z (l-z) [81, ct. 3]. Since there is no special

symmetry in the tubular reactor problem, we use (a,$) = (0,0)

in which case the polynomials are Legendre polynomials. In

fact, Georgakis et al. (54 I compared the convergence rate of

the eigenvalue calculations for various choices of a and B

and found that the fewest number of collocation points were

required for a = = 0. The collocation points are then the

zeros of P (z). By discretizing the equations and
N

eliminating the boundary conditions (as detailed in [54 ,81

ct. 41), we obtain the following set of ordinary differential

equations:

-y_ y (29)

-18-



T
where y (x 1,X x21x1 2 ,X 22 ,. ,xlN X2N) is the conversion

and dimensionless temperature at N interior collocation

points. J is defined by (17) with:

ax Ix-xs (z i3x 2 I (

i w (30)

L Xrl (z )  ix (z i )

and

pe11 - Alla

Pe1  lij0

j - (31)

Li A211 - Ij5

Le 2

6.. is Kronecker's delta and A and B are the differentiation

weight matrices corrected for the boundary conditions, (14) and

(15) , i.e. ,

Xk:j - xij

-[ (A00-Pek)AN.l N+-Ao, N+AN+I 0 ] -[AN+l, +Ao-AON+IAN+IJ)Xio

+ ((A00-Pek)ANI, -AN+lOAoj)XI (32)

X - A,B k = 1,2

-19-
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The evaluation of the derivatives, X , usually requires

interpolation among the discrete points of the steady state

solution. The computational effort involved in the two

procedures, i) and (ii), are then nearly equivalent in spite

of the integrals in (26) because the integrals can readily be

evaluated by quadrature. The choice of method therefore

strictly depends on their convergence properties. McGowin and

Perlmutter [53] showed in numerical examples that Galerkin's

method converged monotonically while the collocation procedure

converged in a dampened oscillatory manner, but they did not

compare the overall rate of convergence. Because of the

similarity between the eigenfunction expansion and the

perturbation solution to the special adiabatic case with

Le = 1 [64,65], one expects that the necessary number of

terms, N, will increase with the value of the Peclet number

starting from N = 1 at small Peclet numbers. This is further

discussed below.

4. CALCULATION OF THE STEADY STATE

The steady state equations for the reactor (cf. Equation (7))

form a nonlinear two point boundary value problem which is quite

stiff even for moderate values of Peclet numbers (Pe - 10).

This boundary value problem must be solved quickly and accurately

if one wishes to obtain the bifurcation curves with judicious use

of computing time. Therefore, we have given special consideration

to the calculation of the steady state profiles.

Because of the stiffness, finite differences would require

far too many mesh points and can thus be ruled out. Although

efficient routines exist for solving stiff initial value

-20-
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problems (e.g. [82, 3 1, tj,. shoti:: rthods of McGinn i (84)

and Kulicek and HlavaOk r- e] rr. f -:mers e sir they

respectively requite the int-gration of 12 and 24 first order

equations. In addition, because of the marching nature of the

technique, the solution must. he stored in arrays in order to

be used in the bifurcation analysis. On the other hand, in the

method of weighted residuals the solution is characterized

by a few trial functions. Moreover, as mentioned, the colloca-

tion approach has been proven to be very efficient in solving

this type of boundary value problem. There are several ways

this method may be applied and in the followina paragraphs

we review the advantages and disadvantages of these. More

details on the computational procedures may be found elsewhere [37].

(i) Collocation over the whole domain, f z 1, with orthuonal

polynomials. This method is simple and has the advantage that

the collocation points and weights need only be calculated once.

It has been used successfully in cases of moderate values of the

Peclet numbers (Pe < 10) [e.g. 54,79,80] , but the procedure is

inadequate at high values of Damkohler and Peclet numbers where

the reaction is complete within a narrow zone close to the

reactor inlet as illustrated in Figure 1. In order to obtain

a good representation of the narrow reaction zone, a large

number of collocation points are needed, most of which are wasted

downstream from the reaction zone. Moreover, the large number

of points cause the interpolating polynomial to wiggle as shown

in Figure 1. Although the wiggles are slight, they significantly

alter the bifurcation behavior. This is illustrated in Figure 2a,

which shows the calculated regions of multiplicity. Note that

the collocation technique with N > 8 can accurately represent

-21-
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the branch corresponding to the lower steady state, but even

for 1- 10, it cannot predict the steep upper steady state

profiles when Pe > 10.

(ii) Transformation of the independent variable followed by

collocation over the whole domain. In order to avoid using a

large number of collocation points when the profiles are steep,

a suitable transformation of the independent variable can be

made such that the reaction zone is stretched and the "dead-

zone" is compressed. This implies that the majority of the

collocation points will be lo-ated in the region of rapid

changes. However, no general transformation will fit the

entire region transversed by the reaction front for changes

in the bifurcation parameters, e.g. Da. The transformation

must contain at least one adjustable parameter which has to

be fitted to an approximate profile by nonlinear least squares.

Our experience with this method indicates that the computations

become too lengthy to act as a basis for the bifurcation

analysis.

(iii) Orthogonal collocation with exponentials. Orthogonal
a. B.z

collocation with trial functions of the form: f. (z) = z 
1
e i

have been shown to give excellent results in plug flow reactor

problems since the trial functions are solutions to the corres-

ponding linear problem [861. Because the axial dispersion

model in the limit of large Peclet numbers approaches the plug

flow model, this approach should also be able to solve the

stiff cases. However, we did not find any significant improve-

ment over the standard procedure (i), presumably because of

difficulties in determining an optimal choice for the

coefficients, a. and B.. The optima' iection of these

-24-
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coefficients remains an open problem [86]. The method has the

further disadvantage that re-evaluation of the collocation points

and the weight matrices is necessary after each change in the

bifurcation parameter, which greatly increases computation

time.

(iv) Orthogonal S-line Collocation (also referred to as

orthogonal collocation of finite elements). This method has

been successfully applied in other problems with steep

gradients, notably the catalyst particle problem for large

values of the Thiele modulus [81, ct. 7, 87,88]. The increased

accuracy of this approach over the global approach (i) derives

from the concentration of the collocation points in the

regions where the gradients are steep. Since the number of

points are reduced in the remaining regions where the solutions

only change slightly, the total number of collocation points

may be less than required in the standard case (i). In

addition, by balancing the number of collocation points and

spline intervals, one can obtain a patched interpolating

polynomial of sufficiently low order that wiggles are avoided.

The location of the spline points is clearly critical to the

accuracy of the approach. Carey and Finlayson [87] suggested

placing the elements such that the mean squared residual was

minimized. After a given calculation the residuals were

examined and new elements inserted where the residual had

been largest. Then the procedure was repeated until the desired

accuracy was reached. This approach is general but may give

large array sizes. Instead, one may fix the number of spline

points and let their location move with the reaction front as

the bifurcation parameter changes. A simple way to accomplish

-25-
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this is to monitor the gradients of the solution and place the

spline points accordingly. However, this approach requires a

priori knowledge of the shape of the profiles. A far more

general approach is to rearrange the spline points such that

the mean squared residual is minimized. This can be done by

clhtermining the sensitivity of the solution to the location of

the spline point [371. Because of the extra computations in

the optimization of the spline point, the choice between this

method and the one proposed by Carey and Finlayson depends on

the relative irportance of computer time and space requirements.

However, for cases where the rate expression can be expressed

as a function of a single reactant, the following simple

procedure is attractive.

(v) A Simple Orthogonal Spline Collocation Method. This method

only applies to problems where the reaction rate can be expressed

in terms of one reactant, but because of its ability to give fast

and accurate solutions, it is worthwhile considering. Moreover,

many reactor studies involve such kinetics. The numerical

difficulties are circumvented here by obtaining a collocation

solution for the reaction zone and patching this together with

an analytical solution for the remaining part of the reactor,

the "d,-ad-zone". Thus this procedure retains the advantages of

the simple collocation procedures described in (i) above and in

addition provides for concentrating the collocation points in

the reaction zone.

If one assumes that the reaction is essentially complete

b-yond the spline point z , one may neglect the reactions

rat term so that the steady state equatio!,s on the interval

z !z~l become:

-26-



X 1  I (33)

and x2  S3 if 8 - 0 (34a)

1 dx 2  d x
2 - 2 B(x2-Xw) = 0 if 0>0 (34b)

Pe 2 dz 2  dz 2 2w

with the boundarl condition

dx i
0 (35)

dzz 1

and the continuity condition

- x2 1 + = X2s (36)
21Z 

z
s S

where x 2s is specified once the solutions over the two zones

are patched together. For constant X2 w, equation (34b) may be

solved analytically:

-a(l-z) -o (1-z)

x2-x2w a1e a 2e
(37)

X2 s-X 2 w a e  - 020 a1 (l-z3a

where

Pe24
0102 = 2 L ± 1 + 4(]

With the variable change = z/z s  the steady state

equations governing the reaction zone take the form:

1 d 2Xk Zsk z 2s[f (Xlx) - 62eX2 ]  (39)- - - +s 2 2k 2

Pek de2 k-1,2

-27-
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with boundary conditions:

d. Zspkxk k-1.
2  

(40)

r-0

and the continuity restrictions:

-kj C.1 - (41a)

0 (41b)
€-1

~0 for B=0

dx2  (41c)

fe2 Cl-Z S - (-

Zs(X21 x2w )  2(I-zs) -a l(Zs)  for $J0

€I ae a a2e

Following the hzriard collocation technique and eliminating

the continuity and boundary conditions, one obtains the colloca-

tion equations:

M 2
E ' jxkJ ' + zfk(XliX2i)-6 2kSx2i]=O i=l ... M, k-1,2 (42)
J-1

-28-
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where

kij pe1  s ij

+ I (A0 0-Pezs) (A.H I ,.1+l-bkO) -A -, 0 A0 ,M+-

{[!A,(.XIlj-k 0) - (, :+l,M.l-bko)AojJ e - ZsAi 0 )

{[(A -b )A 0-

+ [l,OAoj+(A00+PekZ)(a0-A,- i zsAi )} (43a)

with

ao1 0  bl0 -0 (43b)

a2 0  b 2 0  0 for B-0 (43c)

a2a 1fe - e > (I43d)
2w 20 2w _s (lZs) _a.(1-z )  for >0 (43d)

For a given set of parameters, B, Da, Pe1 , Pe2 , , and y

these equations can be solved by Newton-Raphson's method and

the spline point can be adjusted such that xlM+l 1 and

wiggles are avoided.

In order for the method to handle cases where the reaction

front is sharp and at the same time situated close to the

outlet of the reactor, one or two additional collocation

points may be needed. Such profiles, of which Figure 3 gives

an example, arise when the Peclet numbers and the heat transfer

are large. The steady state collocation equations are then:

-29-
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at the left hand boundary:

M1+1

J.0 l S aj : lj (4 4 )
J-.O

at the interior points of the 22th element:

M,+12) 
1 .0z -- 1. A Iz2fk(XlL±, - - 0 (45)

-,..., ; -

at each division between the spline intervals:

1 k.L+lI - XkIM+l (46a)

1 1 +1
-- M+, --k ,,~ Z A£+,l~,~, (46b)
Z 0 AJ 1+1 .1j Z+ ]

L1I... .L-I

at the right hand boundary:

- ,k-1.2 (47a)'kL z

M +1
L

I A L,M+I,jXlL j  0 (47b)

- - 0



F
0 for e=O

M +1
L

A L,M+Ijx2Lj
L j=O

b 20(
z x 21 X2w) for BiO

(4
7

c)

where

z-zt_ 1
"Az ; z - z£- £ 1 ; z0 = 0 (4s)

When the first of the additional s:4 In oi nts is la7

at the inflection point of the termperature rffle-, very

accurate results are obtained because then the eneriy .1lan-e

is satisfied also at the spline point. Th,- -ond poifit , wi h

is seldom needed, should be , laced at a Iocal min imum of thf

temperature profile, if such a minimum exiss in the interval

O<z<l. Otherwise, accurate results ar ,!.tain(,d if it is jiaced

between the inlet and the inflection n t f the t em: eraturt,

profile such that it nalves th#, tri ,rit j!e ris e h tw, , 'i -. e

locations.

In order to illustrate the ability of this } l1ne o a, .,r.

method to accurately predict very shaim , p r fiIes, we cunsf',,r an

example previously 'i lishcl by Lubeck HI, Fiqure I w r- t .

Peclet numbers at laruo ( PP 320, P- ) and c-ns i

the prof ler are v ,ry st ,o-. a ; llu tr t.< 
,  

in ' ., 4. ! Au r ,

S sh'w% the hystere...is i. exi ,v, r i a * r a I

A&. e-~
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as the fecd temi,,ratur is chan vj, . Li I cck si :ulated 1i I1t i r

when the feed teumerature, was i:-r ea, from 4 J'C to 464-C

and found extinction when the tmeperaturc was decreased from

355°C to 330*C. Our results are in aqr.ement with thost values;

we find ignition and extinction when the feed temperature is

461.8CC and 339.2'C respectively.

The computations illustrated in Figures 3, 4, and 5 were

based on three spli- intervals (besides the dead-zone) with

six collocation points in each. The two additional spline

points were not really necessary in the calculation of the

profiles shown in Figure 4, but they were required for the

calculation of the intermediate and unstable profiles similar

to the one shown in Figure 3.

5. STATIC BIFURCATION

Three methods are available in calculating the static

bifurcation points. These are: (i) a direct approach entirely

based on the steady state collocation equations, (ii) a more

general extrapolation procedure based on finding zero eigen-

values of the Jacobian, Equation (17), and (iii) a turning

point calculation based on the Newton-Euler Steady State

algorithm.

(i) The direct aporoach. Here the bifurcation points are

located by finding the parameter set for which the Jacobian of

the steady state collocation equations becomes singular. The

bifurcation point can only be approached from one side (in the

case sketched in Figure 6 from the right hand side on the upper

branch and from the left hand ;.de on the lower branch) , other-

wise the Newton-Raphson iteration fails to converce or

AL- -Al



converges to a different solution. Therefore, this method is

not recommended.

(ii) A_teneral extrapolation approach. The idea here is to

linearize around a steady state point, (Da , x s (z)x , x ()) ( awa

from the bifurcation point, Dab, and th,.n use the condition

det (J) = 0 to successfully extrapolate to the bifurcation value

of the parameter Da (cf. Figure 6). This requires additional

computation in evaluating the necessary terms, N, in the

Jacobian Equation (17). Figure 7 shows for various values of

the Damkohler number used in the linearization, Da , the value5

of the predicted bifurcation point Da b as functions of the

number of terms, N, in the Galerkin expansion. Note that while

there is movement toward the correct value of Da, iterative

relinearization and prediction are required for convercence.

However, this is plagued with singular problems because

Da > Da (cf Fig. 6). Expanding the dimension to incl d2 arc-

length as Keller (90] suggests would be helpful, but we four.

the following method to be even more efficient.

(iii) Turning point calculations. Because the static bifurca-

tion points in this problem and similar chemical reaction

engineering problems, e.g. the catalyst particle problem, are

turning points, one may use a very simple approach involving

suitable change of dependent variables such that the system

equations have a unique solution. This approach was taken by

S9rensen et al. (91] who were able to trace out the solutions

to the catalyst particle problem in the region of multiple

steady states by using the value of the concentration at a

collocation point as a parameter rather than the Thiel. modulus

itself. Here we also choose to fix a concentration and include
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the Damkohler number as a dependent variable. In the adiabatic

case it can be shown that the profiles cannot intersect [92],

so the parameter change renders a set of equations which have

a unique solution. However, in the nonadiabatic case, both

the concentration and temperature profiles can intersect [45,

Figure 111. Extensive calculations [e.g. 40,44,45,93] indicate,

as is physically expected, that for constant B, Pe I , Pe 2 , ,

and y at the exit of the reactor

dx 1

dDa 0 (49)

Therefore, we may choose the exit concentration as a parameter

so that the collocation equations become:

2
EL jxij + zsfI(X i -x21 0 (50)

M+I *
i AM+I,jXij (51)

i-i1 ji

M
iE L21jx2 j + Z(f 2 (x 2()X -21- 0 i-l,....M (52)

where Da is a dependent variable. The boundary condition

at z = 0 is now included so AM+I, j  and L li j  take the form:

l,j AM+I,j - (A0 0  Pe 1 zs)-A+ 1 , 0 A0 J (53a)
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LzA - (A 0 0 -Pe z)'A0  i-
Ii j  Pe e I  Zs ij QO 15 O P si

while L 2i is still defined by (43a).

This set of nonlinear algebraic equations can be solved

by the Newton-Raphson procedure, provided a sufficiently 
good

initial guess is available. This initial guess can be

determined as follows. We differentiate the equations

with respect to x l,+ 1 to determine the sensitivity of

xlj , X2 j , Da to a step in outlet conversion x ,  .

2jHH

M R x 2+i + '1 1f l x 2 i
Z i j  a x + z S [ x l +xa z a

Sl i ,M+l U Ixj ,l z2i X1.M+
l

8fI  aDa+ ~ X,+ Lil I=.., (54)

rA *+ L L a (55)

2 axaf2 axlIi af2 ax 21

Z ± + zs1( +- __ _+ j + x., +

+ !2 D 0 il..(56aDa l,+
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This system of linear equations can be solved for a step n

outlet conversion x 1M+l to yield the next initial guess for

Eqns. (50-52).

For the first step, ore may begin from the known trivial

solution to the steady state equations:

Da - 0:

X lj =0

x2j 0 if =0

a (1-zJ) 2 1(1-Z

"21 X 2w I 2-Pe2  2e - J2e

-2

The system of equations (50-52) and (54-56) form a Newton-

Euler algorithm, where they respectively function as corrector

and predictor. Beca ise the left hand of the Newton-Raphson

correction solution to Equations (50-52) is the same as the

left hand side of Equations (54-56), the inverse of the

Jacobian needed for the Euler prediction step is already

available (if for example the LU decomposition is used).

Thus the prediction step, equations (54-56), requires only

an inexpensive back substitution. The above formulae have been

based on the simple collocation method, but two additional

spline points can readily be included as was done above in

Equations (44-48). The Newton-Euler algorithm is Ysei throug-

out the following bifurcation studies.



In order to check this static bifurcation algorithm we

considered two previously published calculations. Using the

spline collocation procedure described above, we calculated

the bifurcation curves shown in Fig. 2b. These are in good
v

agreement with the results of Hlavacek and Hofmann [38b, Fig.

15] except for a very slight difference in the value of the

Peclet number at the trifurcation point (i.e. the confluence

of the bifurcation curves). We obtain Pe = 31.88 whereas

-V
Hlavacek and Hofmann report a value of Pe = 31.05.

The second example is taken to be a case with five steady

states studied earlier [93, Table 2]. Our procedure gives

the same values for Da at bifurcation as the GPM-technique

of Kubicek and Hlavacek (93]. This example assumed y y

It is interesting to note that for the same parameters and

rather large, finite y (y - 100), further

calculations show that only three steady states are possible

(in agreement with recent results of Kapila et al. [46]).

6. HOPF BIFURCATION

Two basic approaches exist for evaluating the Hopf bifurca-

tion points: (i) direct methods basri on actual computations of

the eigenvalues or (ii) indirect procedures based on the magnitudes

of the coefficients of the characteristic polynomial. In the

first method all the eigenvalues are calculated, preferably by a

QR algorithm, (cf. [94] for the original description and [81,

p. 421] for an efficient FORTRAN routine) and the most positive

real part of the complex eigenvalues is chosen as a residual.

This is then made as close to zero as is wanted by varying the

bifurcation parameter ]95]. Clearly, the search is abandoned

-42-
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if the real part of any of the other eigenvalues is positive.

(ii) In the indirect methods the Hopf bifurcation points are

determined by varying the parameters to satisfy necessary

conditions formulated in terms of the coefficients of the

characteristic polynomial:

P 2N S1XX 2 N-2 .+S 2N-2.. 2_ 2N 2-1_X+S 2N - 0 (58)

Here N is the number of terms in the collocation or Galerkin

approximation and the coefficients, Si , are the sums of the

principal minors of the Jacobian Equation (17), [96, ct. 4].

Necessary conditions that the characteristic polynomial has

two purely imaginary roots:

1, 2 = /W W>O (59)

are:
(_)NwN+( N-i S  N-i -a(0

(-I) 1  + +(-I)S2N-2 +S2N " 0 (60)

and

(-1) S1 W N 1+(-l) N-2S 3 W N-2+.*+(-I)S 2N3W+S 2N-= 0 (61)

In order to have bif-ircation we must further have an exchange

of stability. The stability test is conveniently made using

the Routh-Hurwitz criterion as well as the necessary condition

that the coefficients (-1) 2N-is must be positive.

For N = 1 and N - 2 the necessary conditions for Hopf

bifurcation may be reduced to:

for N-1

S1  0 (62a)

S 2 •0 (62b)
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for N=2

S3 - S2  + S4  0 (63a)

S, < 0 (631))

S 3  < 0 (6 3c)

S 4  > 0 (63d)

Recently, Kubicek [971 presented two variants of the above

procedure where he combined the Hopf conditions and steady

state equations and solved the entire system by Newton-

Raphson iteration. However, such a procedure is likely to

cause difficulties in the present tubular reactor problem

because of the large search space combined with local

convergence of Newton's method. Instead we use the Newton-

Euler steady state algorithm and search over Da for a solu-

tion to equations (60) and (61) in the parameter region

where the necessary condition, (-1) 2N-is > 0, is satisfied.a

When a solution has been found, we use the Routh-Hurwitz

criterion to check the sign of the real part of the remaining

eigenvalues. This approach works well for N 5 2, whereas

for larger N the direct approach (i) gives faster and more

accurate results.

The direction and stability of the bifurcating orbits can

be determined, in principleby applying the standard formulae for

ODEs [70,98] to the collocation or Galerkin approximations

(cf. Section 3) since these represent F correctly in the

limit of large N. Alternatively one may use the new formula

-44-
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C)f H'. :ni: :.A:- fo -,I . H- v, r f t ,:~>

Att t m. t lt- . i(r ,.f ur at 1.: :, 1 r it rvs r.

develcp d, tic, :a jI l t 1 n; o f l ijo f 1i foircat i, fn r ts f.

tubular r .actor equations ,ad been carried u.it to our k lw d'e.

Th-r. fore, we nad to ,e satisfied w.to coon ari q L. - d .:r

values at bifarcation ;oints with those used in s :-1 atc r,

of limit cycles. For example, Hlava ek and Hofmaon [3

found a stable limit cycle for the parameters B = 11.0,

Pei PC 2  = 1.0, Le = 1.0, x 2 = 0.0, = 2.0, Da = 0.200 and

y - . This compares well with our result that stable limit

cycles should exist at least between the two Hopf bifurcation

points, Da = 0.153 and Da = 0.238.

In addition, the forthcoming paper by Heinemann and Poore

(99] offers an aposteriori check of our algorithms, since they

have calculated the Hopf bifurcation points corresponding to

the original simulations of Varma and Amundson [45b]. Applica-

tion of our algorithm gave the same results as obtained by

Heinemann and Poore [99] for these examples (37].

The convergence properties of the ,alerkin and collocation

procedures were studied in general by varying the number of terms

in the evaluation of the critical Lewis number, Le . This number

represents the maximum value of the Lewis number that allows Hopf

bifurcation and thus gives a good measure of the convergence

properties of the above algorithms. The actual calculation of

Le is detailed below. As also found by McGowin and Perlmutterc

(531, we show that the Galerkin procedure converges monotonically

while the collocation method converges in a dampened oscillatory
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periphe ral sketche s in Fiqute ). Uptal et a1 o [66] also give

the direction ajnd stal I ity ol the bifjr ati.q orbits as well

as phase portralits of the pos.i Je ,'"ha:-ic L ,havior However,

similar results for t'e tuIul r r.aL-t r are not included h re,

because classifying the taiIity of periodic slutions is

beyond the scott, of th, :r, e t itud..
"

The B-S paramt. r a: t, illt tat ,d in F ioure au ,

shows the var us recimes of iifurcat-on hehavior fox the axial

dispersion ,.del with Pei = Ie2 = 5. This diagram was

calculated using the ;,.wton- Foler 'toady state algorithm with

2 spline points and 6-13 collocation i:oints in each element.

The eigenvalue calculations were ba ed on Galerkin's method

with the first 6 eigenfunctions.

In addition to the M', S,, and S curves also found in
1 1 2

the CSTR case, there is a n ulti Ilicity nurve, M 2  and Tiopf-
2

bifurcation curves S 3 , S 3 , and S4 . The curve M2 represents

the appearance of a second set of static bifurcation points

not found in the CSTR. Note thst for large n, these nay

occur for lower values of B than the first set (which arise

above MI ). Tius the tubular reactor may more easily show

multiplicity than the CSTR for large amounts of cooling.

The curves S , S 3 allow additional Hopf bifurcation

points to appear as B increases, while curve S4 marks the

simultaneous disappearance of two Hopf bifurcation points by

coalescence. These M and S curves divide the parameter

space into 14 regions, I-XIV; the first 6 of which, i.e.,

I-VI, are the same as those found in the CSTR analysis (cf.

Figure 9) whereas the others are new. The bifurcation behavior

-4:-
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Figure 9 Classification of the dynamic behavior of the CSTI

in the par meter space B-S [G] .
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expected in e ach recion is illustrated by the sketches of the

variation of the ste'ady state exit conversion, x , with the

bifurcation parameter, Da. Specific numerical simulations

of changes in the stoady state exit conversion, x ,1 and

temperature, x 2 , with Da are shown in Figure 12a-r and the

corresponding values of B and are summarized in Table 2 and

Figure 11. The vertical lines in Figures 32b,d,i and q

indicate the values of Da for which the steady state

profiles are shown in Figure 13. The bifurcation structure

is detailed in the following paragraphs.

The two multiplicity curves, M 1 and M 2 , intersect at

the point P, (B,B) (12.4, 2.2) (cf. Figure 10). For parameter

combinations to the left of P, above M and below M 2 , x1

versus Da has two turning points, m2 , m I , i.e., three

steady state profiles exist for a range of Damkohler numbers

(cf. Figure 12b). Figure 13(i) gives an example of such

multiple steady state profiles. If (B, ) moves above M 1 and

M 2 , a second set of static bifurcation points, m 4 , m 3 , appear

in the x1 , x 2 curves. In this case five steady states are

possible if the two sets of multiplicities overlap, i.e., Da(m 4 ) <

Da(m ) (cf. Figure 12i); otherwise there are two regions of three

steady states as illustrated in Figure 1
2
p. The broken curve

M 2  represents the parameter combinations, (B,B) for which

Da(m) Da(m 4 ) and thus separates the regions where the two

phenomena occur. M2  is not a bifurcation boundary but it is

interesting to note that comes very close to the point 0

where the M 2, S S, S2 , an curves intersect (cf. Figure

10).

To the right of the intersection of MI and M , (point P),

IAm

--.. . ..- -. ..- 4 - ----lu l



Table 2 Summary of numerical simulations

Case Region B B Figur _

a I 11.0 2.25 12a

b*II 11.0 1.50 b

c III 12.0 1.50 c

d IV 14.0 3.00 d

e V 12.0 2.25 e

f VI 12.0 1.95 f

9 VII 12.3 1.80 9

h VIlla 18.0 0.75 h

i VIIIb 15.5 1.75 i

9 IX 12.6 1.50 j

k Xa 15.5 3.00 k

1 Xb 13.3 2.25 1

m X1 14.0 1.50 m

n XII 12.6 2.25 n

o XIIIa 13.3 1.95 o

p XIIIb 12.4 1.75 p

qv XIIIc 13.0 2.25 q

r XIV 17.8 4.00 r

Steady profiles calculated for fixed Da, cf. Figure 13.
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threp st eady states a r. I- siLL fir (I ,e) in the region below

M, and aLc've M Thus the turring point ; are: m3  and m
12 34

and the multipllicity occur:; at h14her co nve rsions than is the

case for parameters to the left of P. Furthermore, the

multiplicity now occurs to the rlcht uf the maximum in the x 2

curve (compare Figjures 12b and d). As illustrated by

Figure 13(ii) the steady state temperature profile now has

a maximum inside the reactor because of the increased heat

transfer (,). This maximum moves forward and becomes more

pronounced as the reaction ignites. A second set of turning

points, m, and m , appears when (B,B) rises above M 1

and then the multiplicity pattern is again either 1-3-1-3-1

(cf. Figure 12q) or 1-3-5-3-1 (cf. Figure 12k). In the very

special cases where Da(m )  = Da (m 3 ) or Da(m 2 ) = Da(m 4 ) the

patterns become 1-3-5-1 or 1-5-3-1, respectively.

Clearly, if (B,B) pass through the point, F, m I , m 2 ,  m 3 '

and m 4  appear simultaneously so that one goes from a region

with a unique steady state (of. Figure 12a) to a region where

three steady states exist over two disjoint intervals of

Damkohler numbers (of. Figure 12n). Figures l3iii and 13iv

give respectively, examples of steady state profiles for cases

with 1-3-1-3-1 and 1-3-5-3-1 multiplicity. As expected, these

profiles combine the characteristics of the ones in Figures

13(i) and 13(ii).

The Hopf-bifurcation structure is conveniently demonstrated

by considering the different phenomena that comes about as

either B or S is varied. First lit us vary B keeping

B = 1.5. I1 region I we have a unique ilotally stable steady

state profile. As discussed above, two turninq points e.xist

_. . .. .. .. ., - - - . - q - ,-;



In rei in r I (cf. Figure 12b) If 1i is ini-rva.d . '. ,

c" i: v, into regjion III a iopf bifurcation po:It, 1'

liT. ; ont', the ujlper branch (cf. Figure 12c) . Above M2,

in r. '> Cn IX, the turning points, m 3  IM 4  appear to the

ri,]t of th. Hopf point and therefore do not interf,-re with

it (of. Fijii *, 12j). At the S 1  cur e a second Hoi f p, int,

r , . i a d 11 on the middle branch (region XI, cf. Figure

I.::) in.h t me it comes in from m3 .

Since r-,jion XT extends to the upper boundary of the

mi r-,t r siaco plot, we now hold B constant at some value

_ ,, intersection of S and S 4 , say 15.5, and change B.

A, " 1: increased the 11opf points s, and s2 approach each

other and at S4 they coalesce and disappear. This means that

in regini VIlIb the middle branch is unstable contrary to the

-4,e in reqion VIlla (compare Figures 12h and 12i) . Further

.. "edues in B bring us past S3 where a new Hopf bifurcation

o7 .: oo onto the upper branch from m 4  (cf. Figure 12k).

pn passes into region XIV through S1 where a Hopf

bifurc-atinri point moves past miI down onto the lower branch

(t Figur,. 12r). Note that region XIV is extremely small for

4. Finally increasing B leads one to region IV through

M, and m, coalesce and disappear. Figure 12d

i i the structure.

No xt let us fix B at some value below the intersection of

,n
-
1 S but above M and vary B again starting in

42

- T X I . Now S 3 is reached before S4 so we enter region

e.ii . r'r the Popf point, 53 , appears on the upper branch

and s still exist on the middle branch (cf.

1Ag 2A



Figures 12o-q). A further increase in bring , us into

either re.lion X I. 'ro sing S 4  (cf. Figure 12k,l) or region

XII by crossing S (cf. Figure 12n) depending on the value

of B. In the first case, S 4  is encountered and s1 and s 2

coalesce while in the second case s2 moves past m2 at curve

31' From region X, increasing 5 leads us across S1 into

rlijn XIV and across MI to region IV as before, while from

re( n XII we e-nter region IV directly. If M 2  is passed,

the multi: licity vanishes and region V appears (cf. Figure 12e).

Below the M2 curve the S 2 curve forms the border between

reqions Il and VI where a second Hopf point s2 appears on the

upper branch cf. Figure 12f) . If B is increased in region VI,

either S 1 or M 1 is crossed. In the first case (region VII)

a third Hopf point slides onto the upper branch from m2 (cf.

Figure 12g) , while in the latter case (region XII) a

multiplicity is formed between the two Hopf points (cf. Figure

12n). Increasing B in either region leads to region XIII.

Let us discuss the intersections between the M and S

curves. Because the curves S and S respectively
1 3

represent parameter combinations where Hopf bifurcation points

appear from under the turning points m 3 and m 4 , the curves

have to come together at the point 0 where Si crosses M 2 .

Also S 2 has to join at this point in order to preserve the
2t

balance of Hopf points. Similarly S2 and S 3 have to

coincide where S 2 intersects M 1 since they represent

points which come onto the upper branch through the turning

point m 2 . Note that S, and M "kiss" and depart again as

in the case of the CSTR.

A



A rigorous analysis of the direction and staLility of t?.

branching periodic solutions has yet to be made in ordr To

obtain the complete phase plane structures of each reni on.

In addition to the nine basic phase , ortraits given by a I

et al. ((661, Figure 6) one clearly would otai n new

plots in the regions where five steady profil--s and/or thr-

Hopf bifurcations exist. However, the structure of th s 1..

not be entirely new, but rather combinations of charactri t :s

of the basic plots. For example, the phas, portraits of

region XIII will be a combination of those for regions III and

IV. Similarly, the plots for regions IX and X are likely So Le

a mixture for regions II and III. Because a unique unstable

state is surrounded by a stable limit cycle, one knows without

further analysis that stable limit cycles exist in regions

IV-VII and XII-XIV. The original simulations by Varma and

Amundson [45b, Figures 2.3 and 2.4] nicely illustrate with

phase portraits and reactor profiles some of the possible

limit cycle behavior in these regions.

Effect of Varying Peclet Number

As already demonstrated above, the most dramatic influence

of the Peclet number on multiplicity and oscillatory phenomena

is the introduction of an additional set of Hopf and static

bifurcation points to augment those found for the CSTR.

However, it is also rather interesting to consider the effect

of the Peclet number on the critical values of B and .

Let us begin with the multiplicity limits and compare these

exact limits with those predicted by Hlava-ek's "linearization"

[38] and the one point collocation method. Both these early

lumping techniques give the following algebraic steady state

equations:
-6>-
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co 1 1 a C a t i o: 7" 1 ! -1 h,2 -7

By s.l.i r fr ba ci findin t ira' tr s-ts f-r '

dDad.a = is p -ssi-1o, qnte At rive s th, n,,c,-ssar : cc (it.i

dx

multijl 1c1ti
T.: U 1.t I .i

4] x

>

II 2 4 u2 -x 2

Because both * 1 1s Pe - 0, this condition (68)

approaches the usual one for the CSTR :66, inequality (12)]

in the limit of small Peclet nuabers, as it should. However,

for large Peclet numbers, the criterasn (68) takes different

forms because as Peclet number becomes large, U. re while far

Hlavacek's approximation 21 - 4/3 for the one point

collocation ap roximat ion.

Figure 14 Qives a comparison of the; exact multiplicity

-A~d-
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irit

-V, : . A : . V ' :- e.: fl, 2 w t< 1 
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i 3- 1 S ,V s ,

S .' s - I i t and te r r -a ast al ost

c ' to< curve a) "r this C Hin S a --, s

i-I r x i nA-t: - cr, <as., : monot rnically whereas the ne.coint

•i , --,:t s : -eto.'I correctly predict< toe di but then

smot cut -at the CSTR condition. In the nonadiahatic

-a-- g,'o h 2.0 (curve c} , the curve divs down ani stay s

I.-l nwi .- , d io for multi: licoty in the CSTP case.,

Sr 1 0 f , o 7. l t S u to two, fsctors;

itcrecting t,2 N line (Cf Flour< 1:)

f:. - m ,' I r, nes with i ncreasmnc

-:- ,r.- h it has not been formally oroveo,

r nu7 - r -al c ,Iculat ions infer that the M urves are also

r I : lins for Pc > 0. Whereas Hlavaek's approximation

am r , the a di batic CSTR condition asymptotically, the

l .s t- in-r; prediction stays close to the exact limit.

f r r P-- LT, it is above the exact limit and thus

r t r :, : n rs: wh e re there are multille steady states.

S i k's a; ;rcx imati,-n gives conservati v

-. 1., it ty i its for the cases here, Varma and Amundson [45a

"a ,.- - . :wo t h a t i , t -,, can0 false1' - redi t 2n i ueness. The

S , ' il t-. x : ct I,- :-dari -- flattn ,t t shows that

-.-r. -. --



l1t: I kit" ait ac u Ii -II for Iair;,. Vitu1,1, of the c t

numb , , in u r. ; r -j t . ' r , ai al , dI., moi I ..

by il .,'k a )owork i s (e. 3 13 ) 4,3 , t re r , g r Cf

multi I t y Cin ht- very 515 , 11 it hig P, i vt c tInUttr. .i

A! 1 1 t; t r a t d i n F i qur, , t r.q i ion i t he .arr a rum t

so ace -4h, r,. m i t c'v c 1 are u m i2 nis:. i s a 1 t.

number increcses. Neve.rthel ss fur e K: ,> nd laraq,, v,-,

of 8, the critical varl 
3

C B is Iowe.r than in the C$ P":v

case, similar to the situation for the multir licity limits

The maximum v.1u.: of i- for which oscillatio ns exist for

parameter combinations of [ ractical interest (e.g.; B f 2,

B < 4) may be inferred from our observation that no Ho-f

b, ifurcation :oints were found for T e 15, B < 20, and = 3.

Thus, oscillations due nc th',e interactiar: of mixing and react c

processes Dcc ur only in very short reactors.

Cle ly the ccmilex -ffurat on structures found for -r -

(cf. F'iqure 1?) are am Intermedditte stau bctw":en the 7'T - -

Figure 9) ad tubular ractors with larce Peclet number :.

Ultimately, we know the plug flow model (which results for

Pe -. ') has neither multiplicity nor oscillations. Thus nun

calculations in Figures 14, 15 indicate that the S and M

lines shown i:, Figure 10 should move to hither and hioor . .

of (B,) as the Peclet number increass, and ultimately

disappear as Pe - t.

Effect of Lewis Number

As mentioned in the introdiction, the Lewis number has

practical interest in revealing whether or not. limit cycic.7

ar,' possible in fix.,- bed reactor!-. The fa f b1 furcation

analysi s provides ,a m.anr s fr na. a study, and we use t
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Figure 15 The lower limit for 11cpf bifurcation at different
values of the Peclet number.



A IFa K y and Hast 1ing [67] , to 3,.t, i :. ' .'*

n f t 1".'; nu .- r a be v - wh l ,!. os:l I , i.

. ccur. a "I of the arnaloay to the. CSTPc a ., on-

F.- ilIati o ,ns to exist for all 0 .e < Le , a:,d In, fa t
C

v-xtefn;ivC nun.ricaI caIcuat Icns sunnport this conjec" l.I a.

Tb'! Lifuruatnon analysis -lay be carried throunh wi!tI

r. t t., Le just as was done in the previous 5(ctions with

r- jLct to Da. In the CSTR case the model parameters can be

redefined such that the parameter space plots for Le = I can

be usei iirectly for all values of Le [67]. Unfortunately,

i.n the tubular reactor case, a similar redefinition of the

1aromee:trs :annot be made because of the convection terms in

the modelling equations.

When N = I in the collocation o' Galerkin approximation,

it is possible to derive an expression for the Lewis number

from the Hopf condition, Eqn. (62a):

S1  tr(J) = tr(M + K 1) = 0 (69)

0 y inscrting the expressions for M and K (25,26) and

(3J,i31) and rearranging, we obtain (for the Galerkin procedure)

h, r, s:; ion

1af 2Pe 2
ix2 2- dz - -i+ -+ 2 ]

S

Le = - ______________ __ (70)c l~f .Al Pel



xl. tr' ht c,,)at on , roccdure we ha,

2 211 *

Pe 1 211

x (z.)
Le¢a - BII(711

whore both formulae are subject to the constraint Det(J) > 0.

When N = 2, the Hopf condition (63a) may be rearranged

to a fourth order polynomial in Le by using the fact thatc

the Lewis number divides all elements in the even numbered

rows of the Jacobian Equation (17) [37]. However, when N > 2,

the Hopf bifurcation condition becomes too complex to be

expressed in terms of Le , and Le is then determined
c C

iteratively hy calculating the eigenvalues of the Jacobian.

In the following paragraphs we give examples of the changes

in the bifurcation structure as Le - 0. Figures 16, 17, and

18 show the variation in the critical Lewis number with the

Damkohler number in three different cases of steady state

behavior, and Table 3 summarizes the corresponding bifurcation

regions. In these calculations N = 6 terms were used to

insure accurate values.

in the first case tFigure 16), the tubular reactor equations

have a unique solution for all values of Da. This is globally

stable wh-n 1,e > Le where
c

Le max Le (72)
Da >0

I a I c



Table 3 Types of bifurcation behavi ,r for di ff, rtiit

Pe as Le - 0 )

(B = 15, Pe =Pc x = 0, =3, y =10)

FlIour, Pe he eions
+

16 3 Le>. 39 I

1.267<1Le<. 39 V

1.262,Le<1.267 XV*

0 <Le<l .262 V

1.27 <Le<1. 31 III

17 4 1.26 <Le<1.27 IV

1.22 <Le<1. 26 XVI*

0 <Le<1 .22 IV

Le>1.28 VIIla

1.27 <Le<l. 28 XI

1.25 <Le<1.27 IX

18 5 1.22 <Le<1.25 XI

1.20 <Le<1.22 XIII

0.844<Le<1.20 x

0 <Le<0.844 XIV***

+ cf. Figures 10 and 12

* New region, cf. Figure 19b

** New region, cf. Figure 
1
9c

cf. Figure 19a

-. 8-
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Figure 16 The critical Lewis number, Le c , and the steady state

exit conversion, x1, for varying Damkohler number,

Da. B 15, PC 1  = Pe = 3, x2w 0, 3, = 20.
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C. 1 7 The critical Lewis numnber, Le T, and the steady state
exit conversion, x I, for varying Damkohlcr nurber, Va.
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At Le 1.39 a set of Hopf bifurcat ion lpoints, s 3  and

s, appears and these move apart as L e decreases. This

behavior corresi onds to region V. Since Le has a secondC

local maximum, Le 1. 267 at x1  0.72, a second set of

Hopf point,. S1 and s emerges when L( I~ . 267 . Thus,
cc

th, re are two int,,rval of ')a numbers wher, stalle oscillaticir.,;

exIst. This structure, which was not found above, is

classified as rcio n xv and is i1lustrted by Figure lqb.

When I., = 1.262 the Hopf points, s2 and s3, coalesce

and disappear. Thus, we are back in region V.

In the second case (Fcigure 17), three ste:ady state Frofiles

exist for O.160 < Da < 0.168. As Le decreases beneath e a

Hopf -pint al'pears on the upper branch and we have a region

III behavior. At Le = 1.27 a Hopf point comes onto the

lower branch at the turning point and we are then in region IV.

Because Le versus Da has a local maximum, Le 1.26 atc c

x= 3.71 and a local minimum, Lec = 1.22 at x I  0.81,

a second set of Hoof Foints emerge on the lower branch when

1.22 f Le f 1.26. Thus, there are now three bifurcation

points on the lower branch plus one on the upper branch. This

structure is new and is classified as regjon XVI. It is

illustrat, d by Fi,7ur- lc. For Le < 1.22 the set of pointsc

disapi-ear a7ain and wo, are back in region IV.

In the third case (Figure 18), we have multiplicity of the

kind 1-3-5-3-1. Since be is located on the middle branch,
c

we pass from region VIII to XI as Le decreases beneath 1e C

At Le = 1.27 the Hoe.f int "falls off" the second turning

olint and then we hive rogion IX behavior. At Le = 1.25 a new

__ - -- ---.--
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.. 8 14 15 16 air

OR O

1.9 - 4a

b1X "" ~ X2 3 '"""" "-

9.6 8.-e'oo19 20. 16 0.r ozo 0.Is 1.19

Ca
4 .

0.
8  e . a7 1 8 0 197 a. 15 0 1O 0 1

OR C

Figure 19 The steady state exit conversion, x1  d temperature,

x , for varying Da: B 
=  

15, x2 ' . -- 3. y = 20.

(a) Example of region XIV beha-_ r: Le 0.800,
PC = PC = 51 2

(b) Example of region XV behavior; Le 1.263,
Pe 1 = Pe 2= 3

(C) Example of region XVI behavior; Le = 1.240,
Pe = PC 2  = 4
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bifuration po itt eme rqc f rom t,, hind the th1rd turr, ; i ti

a d. Qk i S i X I . V h 1 .e 1 2 . H

api -arj en the upper branch living u: 1-1 ion XIII b(:.dv i r

At 1,e - 1.20 the Hof points on the m1ii 1- of t , ,rin h

ca1t, !e and we have a region Xa , tructur- unt i I

whre -,int 7-r,7-s on the lower !ranch (r,,31<n X I'.' I

i rll u itrated by Fiqure 1"a, which 1inAJcit, t . x .

a stable, limit cycl surrounding five unstab , sta !y t i

for a small raine of Da just to thle riaht of th( 1<w,.-r H f

bi fur-a t ion point.

It is possible to answer the question of exi st n,

lirit cycles in fixed bed reactors, by considering the at:s ,

in L with Pe as illustrated in Figure 20. Here also tht-
c

influence of the number of terms in the Galerkin cx:ans; .n as

shewn. The discontinuities in the curves occur when Le
c

fhifts a'ong branches in the region of multiplicity as is

illustr~t-d by Figures 16, 17 and 18. Note that L, beCo7.,c

less than unity for Pe > 14, which implies that, even for

.mpty" tubular reactors (Le = 1), oscillations are only

possible in very short reactors (as was shown in the previous

., etion) . Threfore, oscillations due to interaction of mixinq

1id reaction terms should not occur in industrial fixed bed

:t s whet- Le - 500 are common.

C CoN cr.:D I N7 R MARY.S

I ' :., a:<.r we have given a detailed analysis of the

of milti-le steady states and oscillatory behavior

t m ir r.,actors nsing the pseudohomogeneous axial

A , r cr 1 a.Ir a' I an example. This model was a convenient

choic, since the .e.lling eluations formed a relatively simple



f i l l 1 1 1 1 1

B =15, Pe1 = Pe2 ,
X?W

=3, 20

Le~

0.5- N =1

0 10 20 30 40 50

Pe

Figure 20 The critical Lewis number, Le c, as a function of the

Peclet number, Pe for different number of terms, N,
in the Galerkin expanlsion.



set of nccnIi:iear cipled arrbtol : i art i iiffo:r n tial

eqju It 0!5 M'ttioI revI . 1 oi Ii c xo "x r IS

ml t pl ti .' St att s and i riIIt ,c 11 fo this model I t .

it :nssi I tO :n.c k tho' aI r Itt.n. :, <i..<l con d,.r i .t ..

wer,, t3 ,',0 to the el]ut ion of it ff eta 2 t'.7 'tate e )uat o

anI, 3 iq ,iff ren t a ptrOx . ttie[i orc, 'r t, r thoo i

line colo ocation was four, to qi'.'e tic ,,t accuracv.

Co m'ar1sot.t of various ways of calculating nifurcation to

multiple s toaj y states shoV.'c:d direct tur ing , Lnt calclt-,I no

to bD" most 7onv-nitnt. The eigenvalues of the linearized

o perator werej determined 1)y both a collocation and alerkin.

procodure. "he forme r converoed in a damnened oscillatory

manner, while the latter ap;teared to converge faster and

monotonical lv.

The bifurcation algorithms were sensitive to the accuracy

of the steady, state calculations so even far moderate Peclet

numbers (Pe 5) it was necessary to use soline intervals

with 6-1'D collocation points in each interval. Although

orthogonal silin,- collocation woe very efficient in tho

stead ! stateo calculation s , this meant shat 13-60 minutes of

CPU w,.r. r,,quired on a PDP 11/55 minicomputer in order to trace.

out the bif)rcot-on bohavior for all values of Da > whEn

all other ia..rameters were fixed. The actual length of rh.-

computations depended on the narrowness of the search interval

and the values of B and Pe. To fully describe the tyros of

dynamic behavior possibl-, one still has to determine th,

stabiliy*. and dir-ction of the branching of Ieriodic solutions.

This can -asily be done within the framework of the present

.1 . , .. ~ _ilL



for ; a1± zf 10 inma 1n 1 1nI

A I t ho U; h i n t n F, a :: a' I a 1 a a a f c

a tubular rectrt L a r i r,6 v, ur e s houl j C

u seufulI i i d,-, rIn1rnn- u r - aA t rc rlr S rtSeC':.'

other slystems ! -scr ile ' PEs. c a cni t he r ic-h

vart ety o-f ,i furcati: . tcurue rin t reatI- v, - s 1M>

axial di spersion tubul ar reac:tor mcd, o ne can envi scI

the intricate and challeon strui turC5 cS'll I en t 7 not

comnplex models.

iis wo rk w as su o: rettedl: ar y~ t i rilSaesz rm'. uI,

t.ar at. o t pT-2~ Al>, ''oa rar U'', to,2cor
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; i', ffiLi,'!t in Galerkinr expansion, d- Iincd in LA. (li

,l!, ocatioin weight, see Eq. (27)N I

dicii e inlus adiabatic temperatue rise, defined in

1-, cat ion weicht, see Eq. (28)

y ope rator, defined in Eq. (1)

o'onct ntrat ion

feed concentration

heat capacity of fluid phase

* h-at capacity of solid phase

capacitance matrix, defined in Eq. (8)

diameter of reactor

Damkohier number, defined in Eu. (6)

longitudinal dispersion coefficient

activation energy

x ,: ornlinear multivariable function, lefined in Eq. (1 )

* linear aner ator, defined in Eq. (16)

tha!,y of reaction

;ac:,bian, defined Ln Ea. (17)

* re-exuonential factor

;,. Ysgitudinal thermal conductio;n

5 2 x 2 matrix,defined in Eqs. (26) and (31)

reactor length

* - of spline points

, " operator,defined in Eq. (9)

: :ined collocation weight, see Eq. (43)
n -i io

:.,-wis nunl-er, defined in Eq. (6)

"ns. c-aI L.'s numer

-75b-
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,'.1 *tr " f I ?It r II C.10 jO t n t 10 S teady S ate

M x 2 matrix, d -n.d iii I . 2S) and (30)

N number of t:rms in collocation or Galerkin approximation

vector of parameter values

P( ) char actc r st 'c o pol nomial , Eq. (58)

Pe £'ecl, t -oo> .r for mass dispersion, defined in Eq. (6)

Pe 2  Peclet number for heat dispersion, defined in Eq. (6)

R universal ias constant

S i'th ."opf bifurcation point

a. sum of i'th principal minor of Jacobian1

t time

t dimensionless time, defined in Eq. (6)

T temperature

T wall temperaturew

T feed temperature0
U heat trarsfer coefficient

wvz  linear nas yeoit

x state vector

.co.versiondfined in Eq. C6)

x2 dimensionless temperature, defined in Eq. (6)

x 2s value of x 2 at the spline point, z , see Eq. (36)

X 2w dimensionless wall temperature

y state vector

z longitudinal coordinate

z dimensionle5s lonoitudinal coordinate, defined in Eq. (6)

z. i'th spline po.int1

z sLilin:, -oint semaratnq t, reaction zone from the
"dead zone, sec E. (3f)

ri



Fi c i e rint s, decf in ed inr LC) 38)

dimrenuonless heat transfer coeffi cient, defined in lu:

Y dimnn3iornless activation eray, defined in Eq. 6)

6. ronncker's delIta

ditnensionlesE' lonqjitudlinal coordinate

n'th eiaenvalue, qivon in Eq. (23)
khn q.(2

U. coefficients, see Eqs. (66) and (67)

6 densit' solid c.hase

k (z) n'th eqnfctosetEq.(2

w frt-quency of the tifurcating orb'it

-A&L7-,----A
-A O&"
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S0 .. , - Z: .:

a tt nr na.
E ,1 , tji, (o o 10) (e)d; d s 1 . , t .f , I f . .

:,.2 3 xanple off a steady/ state) rofile for wni;:.h t';r,

spli;:c points (0) are necessary. : IC C D. 8 3 3
P i  320, 2 10 , x2w 6 ). 72 y

r :4 A:1 example of steep conversion and temperature
profiles found by spline collocation. (a)
steady state, ( b lower steady state. B 6 6
Ca 1. Fe 320, Pe 2 = x 2w 6
a ,.72, , 16.9.

2':u: ' 1gnition and extinction behavior of outlet conver~son
anA temperature for Lbeck' s exam'. I e, J

Pe 100, = = 0.72, B = 9a710T 7 33-

1 22 10"T" 
X  

w y(310-T)T , T f d E--J e m., r.t r..
if 2w f f

r Stead,' state value of x (z) for varying La. T2h, curvv
has two turnirng points, ml and in

.>" 7 '' .::r~dicted bifurcation points, Da-, for vario:;s
assumed values, Da , and varying number of term.,,.,

in the Galerkin expansion.

E,=, The critical Lewis number, Le , for varying number f
terms, N, in the collocation procedure (x) and in

Galerkin ~ ~method (o).

C.;.sif .ation of the dynamic behavior of the C"'TR

in th- parameter space B-:" [661.

1 1 ' is i fication of the dynamic behavior of the n 2.

dispers ion model (Pe = 5) in the parameter aco i-
In the peripheral figures: - stable state, ---- un-

stahe state, e Hopf bifurcation points.

,: 1 i Clan;s fication of the dynamic behavior of the axial
dis:er;icn model (Pe = 5) in the parameter space-0

Cf. Figure 12a-r and Table 2 for further details.
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F i rir . 6 T ,- cry' ' awi n u n -.r , L e , ': t e ste5aa d '' s tatea
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Isa. F, - I5, Feo F e 2  : 3, 2w O, = 3, "( = 20.

r'lure I D'hc c': till! Lewis nurer, Le , and the stead, state
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"xit cncrv'erso;, x] , for varying Damkohler number, Da.

"a l. P ,2, = 3, = 2 . 0

Fio.re 15 The :r: dal Lewis n u mher, Le , and the steady state
exit co.v'r:ein, x , for varying Lamkohler number,

Da. B , 1 ' Pu = 5, x =w 0 , 3, = 20.

Fi-jure : ax'h a ty x t conversion, x1l, and temperature,
S 2  -or' ,. "; D B = 1

q
, x = 0,5 = 3, v = 20.

2 1 2 ,

a x' i l, vf relon XIV behavior; Le = 0.800,

2
' xam I ipn XV behavior; Le 1.263,

c F x-a ' r- icn XVI Lehav.or; Le = 1.240,

Viour- 2 1 n no'r, Lo , as a function of the

forditff'n ,t e r of terms, N,
SI 1 0 ion.
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Methods for studying the bifurcation behavior of tiluldat ac tki _

Leen df-veltcped. This involve-, t-ne application of static arnd iiopf hit- .i,

the'ory fi,r PU an,] the very precise deterimination of at cd; :t at
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!U o. I irtAeru L(con A dia(2 rs 1 i a rd Ireactio 1C)I f C."ts afoul I Iot
i xc r oct )rs tii inreover , shuld on ly occur in very !At

I 1.to h.ea parametor sudy not only br inys toyether

1,2~;lds of mul tipile and per iodic solutions but alco-
ji1'1scove red Wealth of hifurcat Ion st ructures. Sixtecfl (if

wh ich coine abort by comb)inations oif as many as four

- I'- lle i~~dystates and' four Lifurcations to periodlic

1 1 !UlStratedl Withl numlerical examples. Al though the analysis i a
* .1!±mo~occuSaxial dispersion model, it can readily Ibe
,a-t ion di1ffLus i equations such as the general two phIasu

X- 1 -- actor".
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